SELF-SIMILAR PROBLEM OF THE DECAY OF
A TWO-DIMENSIONAL DISCONTINUITY

V. M. Teshukov UDC 533.6.01

The plane problem of the decay of an arbitrary two-dimensional discontinuity for the gasdynamics
equations is considered. The initial surface of the discontinuity is assumed to have the shape of
an angle close to 7. The existence and uniqueness of the solutions of the problem in a linear
formulation are proved.

Linear problems on the diffraction and reflection of shocks have been considered in [1-3]. The problem
of the decay of a two-dimensional discontinuity reduces to a new boundary-value problem for equations of
mixed type with discontinuous coefficients.

1. FORMULATION OF THE PROBLEM

Let some curve T" separate a plane into two parts, Dy, D;. Two polytropic gases in states character-
ized by the constant parameters

w=w v=u p=p 0= =5,
= 0

:’Yl’ (xﬁy)EDl
U= Uy V=1V D=Pyp L= Pg = Yo

Y
v (z, y) Dy @-1)
are in Dy and D, at the time £ = 0,

The baffle T’ vanishes at the time t = 0. It is required to describe the gas motion.

The solution of this problem is known in the particular case when the initial surface of discontinuity
is a straight line. Here the solution of the problem of the decay of the discontinuity can be constructed in
the class of self-similar solutions of the one~-dimensional gasdynamics equations. It is evidently impossible
to construct the solution of the problem in the class of self-similar solutions for an arbitrary curve T'.

The necessary condition for self-similarity is invariance of the initial data of the problem relative
to the transformation of the independent variables x,y corresponding to the infinitesimal operator [4]

zd| oz + yd | ay

This condition is satisfied if and only if the initial surface of discontinuity T has the shape of an angle.
In this case the problem of seeking the self-similar solution describing the two-dimensional decay of a
discontinuity originates.

The decay of a discontinuity symmetric with respect to the bisectrix ' of the angle T is later exam-~
ined. By virtue of symmetry on I'y the condition of impenpetrability is satisfied. Let us introduce a fixed
%,y coordinate system in the flow plane so that at the time t = 0 the origin would coincide with the vertex
of the angle and the y axis would be directed along the side I'. Let I'{ be given by the equationy = -x tg o
in this coordinate system. Then the initial data (1.1) should satisfy the relationships vy = -uy tg o, vy =
-uy tg . Without limiting the generality, we can consider that uy= 0, py = p,.

If new dependent and independent variables corresponding to the conical flows

E:‘T./ti 'f]:y/t7 U=(U,V)=(u——§,v—-n)
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are introduced, then the system of gasdynamics equations will be reduced

to
(U-V)U+p'Vp+U=0
(UG-Vp) +pdivU +2)=0, (U.V5)=0 1.2)
This system is hyperbolic for |U| 2 > C® = 8p/8p and elliptic for
lul2< Ca
Fig. 1 For large n the decay of the discontinuity is described by the

known one-dimensional solution. Different configurations of the one-
dimensional decay of a discontinuity are hence possible depending on the magnitudes of the constants pre-
scribing the initial state (1.1). Following the terminology in the book [5], let us designate that decay of a
one-dimensional discontinuity such that the shock goes into D; and the rarefaction wave into Dy as the con-
figuration A. The configuration B corresponds to two shocks going into Dy and D,, and the configuration
Cto two rarefaction waves.

The appropriate inequalities for the initial data (1.1) which will assure realization of the configurations
mentioned are presented in [5]. Knowing the one-dimensional solutions,we can construct the boundary of
the domain in which the flow will be essentially two-dimensional,

For large 7 let a one-dimensional decay of the discontinuity corresponding to configuration A occur
(Fig. 1). The solution is constructed from the simple Riemann wave 2° and the two constant flows adjoining
the contact discontinuity. From the intersection of T'y with the forward front of the simple wave let us draw
a characteristic of the system (1.2) in the known solution 2°, 2 to intersect the front of the contact discon-
tinuity at the point G. In the constant solution 3 let us construct a circle U? + V2 = C? intersecting the front
of the contact discontinuity at the point H. If 5 > 5, (as holds in Fig. 1), thena characterlstm is drawn
from the point H along the constant solution 2 to the intersection with the characteristic NG. The known
boundary NMHF and the unknown shock front FE close the flow domain of a double-wave type. The boundary
of the mentioned domain can be constructed analogously in the remaining cases also. A definite boundary-
value problem for the system (1.2) with the unknown boundaries, the shock and contact discontinuity fronts,
originates in the domain NMHFE.

Let us consider the problem of the decay of a discontinuity in a linear formulation by assuming the
angle « small. Let us take the one-dimensional ecay of a discontinuity for « = 0 as the fundamental solu-
tion on which the linearization is carried out.

Configuration A, Some possible forms of the perturbed flow domain for the linear problem are rep-
resented in Figs, 2a, b, and c. The flow can be considered potential in the domain LMN. Let us infroduce
the flow potential by means of the formulas ng =U, ¢ "= V and let us represent the function ¢ as

¢ = @+ ap

where ¢, is the potential corresponding to the fundamental solution. An equation for the perturbation poten-
tial  is obtained after linearization:

|- (Tfji‘i - (§~u1>)2]wm—[%—%(g—un]x

Lo BCT T e
?(nil'ﬁﬂ, T+1 ‘pﬂ [T1+1 - 71+1( I)J"p" 'Tl+1lll/ O

(1.3)

The boundary conditions for the function z/) are the following: ¥ = -um on the characteristic LM, and
by = 204+ 1) 1Cy+E) - (Y- D (}Yi +1)"l, for n = 0. Linearizihg the system (1.2) in the constant solu-
tions 2, 3 results in the equations

x;Vyuw! = Vp!, (x;-V)p! =dive!, (x;-V)p =divu! (1.4)
Here Uj , pj, pj(j =2, 3) are the desired dimensionless perturbations defined as follows:
w=u;+aCu, p=p;+ 30,0’
p=0;d+op), z=E—Un)/C; yi=n/C

where Pjs Py C.,U. (Uo, 0) are the gas parameters in the fundamental constant solutions. An equation for
the functlon pl ollows from the system (1.4):

(x]- el 1) ijxj + 2x;yjpﬂcjyj + (yj2 - 1) piljllj + zxipfcj “+ 2yjpé,' =0 (1.5)
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The boundary conditions for the system
(1.4) are

P=uw=p02=0, *=—u/C, EnNEsMG
V=—Uy/Cy p =0, 1,=0, pP=wd=p*=1"=0
(E,TI)EGE, Ua:"—UO/Cay pyzs'_—oi y3:0

Let the front of the contact discontinuity
in the perturbed domain be given by the equation

E=Uy+ of ()
The conditions on the contact discontinuity yield the following boundary conditions:
Y1P® = YoP3y, Co? = Cq® =f () —f' (), 7, = 253 = 0
Using (1.4), the last relation can be written as
CyPx,® = C3py,® (42 =CriCays)

Let the perturbed portion of the shock front be given by the equation

Ds—Us _ [ (Yo—4) M2 27T __ Ds
-'fs:ks‘{’mps(ys)(ks: o ~{2T0M32—To+1] ’M:;—‘CT‘)

where Dj is the velocity of the unperturbed shock front. Using the Hugoniot relationship on the shock, the
3

u?, v3, p’, p? can be calculated on the boundary EF:
2 Mgt , 2k (M2 —1) ’
ud = To+41 jll;j— (1‘73 (.’!3) — Ys¥ (¥g)), V° = — T\';%—T):almws (!ls) (1.6)

= %—IST(¢3 (ya) — ¥s¥' (U3)), Pt = m%‘k—aﬂa__(% (¥3) — ya¥" (¥9))

From (1.4), (1.6) we obtain
yi (k% — 1) b o+ ULy + Ky — Nk p, 7 =0
zp =Ky G =3 Ly = e Mg (M2 + 1), @n
Ny = (ro + 1) (M — 1) [2(r, — 1) M® + 4172

Still another smooth-shock-front condition at the point E should be satisfied on EF:

dt 4k;
S Pys? (b t) = = — (1.8)
EF

Configuration B (Figs. 3a, b, ¢). In this case the linearized equations are in the form (1.4), (1.5) for
j = 2, 3.. The boundary conditions in the domain @, are the same as in the case of configuration A, The con-
ditions on the boundaries MG, GH, NH in the domain Q, also do not change. The conditions on the boundary
MH

Ty=ty=—[(v; — D)MS2+ 21 27 M2 — 1y - 178, M, = 1Dy — uy /Gy

have the same form as the conditions on the boundary x; = kg if ¥, is replaced everywhere in (1.6)-(1.8) by
v1 and the subscript 3 by 2, with the exception of the second condition (1.6),which is in this case

Dy (Ma? — 1)

2 . 2T ) W _
v= (m—1) My 2 ' (¥2) N

Configuration C (Figs. 4a,b). The boundary conditions and equations remain the same in the domains
24, @, as in the case of configuration A. The equation for the
perturbation potential and the boundary conditions in the do-
main Q, agree with the equation and conditions which are valid
in @4 if uy = 0 is substituted, and £, C,, v, are replaced by

~£&,Cg ¥o. The same boundary conditions are valid on the
remaining boundaries GE, GH,and HQ as in the case of con~
figuration B.
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2., EXISTENCE AND UNIQUENESS OF THE SOLUTION OF
THE LINEAR PROBLEM

The existence and uniqueness of the solution will be proved under the following constraints on the
parameters of the problem:

Colyt (4 — &%)
in the case of configuration A and

(1 — k¥ L Cols7 < (1 — g?)™h2
in the case of configuration B.

For such a choice of the initial data (1.1) the characteristic issuing from the intersection of the line
of degeneration x} + y = 1 of one of the equations (1.5) with the line GH terminates on the line of degenera-
tion of the seconcf equatxon (Figs. 2, 3a, b). Otherwise, this characteristic arrives on the shock (Figs. 2, 3c).

The solution of the linearized problem outside the domains o4, ¢y, 03 is found uniquely in explicitform.
As has been shown in [6]; equation (1.3) is integrated in quadratures, and the mixed problem in the domains
2, and ©, reduces to the solution of an Abel integral equation of the first kind, solvable explicitly. By the
change of variables

2 =04 arccosr;"l, T=0-—arccosr;!

O =arctg(y;/ =), 7%=z’+y} 2.1)
(1.5) is reduced in the hyperbolic domain to the wave equation pZTj = 0. Knowing the general form of the
solution of (1.5), the solution of the linear problem outside the domains o4, 0y, 03 can be constructed ex-
plicitly.

Therefore, the proof of the existence and uniqueness of the solution of the problem of the decay
of a discontinuity reduces to the proof of these facts for the auxiliary problem consisting of the following:
find a pair of functions P = (p%(x,, vo), py (X3 v3) defined for x = 0, x3= 0, respectively, which will satisfy
(1.5) (j=2, 3), be continuous in the closed domains oy, 0,, 03, twice continuously differentiable in the domains
04, 03, and continuously differentiable in the domain ¢y such that the derivatives p, 3, » Py, J will exist and be

continuous for x.=0 and, in the case of configurations A and B, for Xj= k The functions pJ( 0 Y5 } should
satisfy the following boundary conditions for A, B, C:

Py =0, 4; =0, Pl = %)

11P% = ToP®s CaPa = Cspxdy 3y =23=10 @.2)
The following conditions are posed for A, B: condition (1.7) (j = 3) and the integral condition
ks’
dt
n0= j@ Py by f) == = T @.3)

should be satisfied on the boundary x; = ks,

In the case of configuration B, condition (1.7) (j = 2) is also satisfied on the boundary x, = ky; moreover

ks
83(P) = | b2l )2 =T, @.4)
¢ .

Here I is part of the domain boundary o ,Uo ,Uo 3 consisting of segments of the line of degeneration of
the type of (1.5) and of the characteristic bounding the domain o4; Ty and T, are given constants, y;(y;) are
functions differentiable along ! with H6lder continuous de-
rivative, and ki’ = vV1-ki.

Theorem 1. The solution of the problem (1.7), 2.2)-
(2.4) is unique under the assumptions made above.

By virtue of the linearity of the problem it is suf-
ficient to show that the homogeneous problem has just a
trivial solution. Let Xy (yj) =T;=Ty=0. Letus continue
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the solution in a domain symmetric relative to the axes yy = y3 = 0 by assuming pj &3, ¥5) = pj &3, —yj) . Let

Py = { YoP® (23, Ys)y 23>0
* | T1P? (5, Ya)» To<<O

The function p, cannot reach a global pasitive maximum or negative minimum within the domain of
ellipticity oy, oy since otherwise p, = const in any internal subdomain, and therefore p, = 0. The extremum
is not reached on the line x5 = x3 = 0 either. Indeed in the cases corresponding to Figs. 2, 3, and 4a, at the
point of the positive maximum, pX =0 and py, 350 according to the Hopf maximum prmc1p1e [7, 8], which
contradicts condition (2.2). Now p, = const along the first family characteristic intersecting the boundaries
Xy = Xg = 0 in the domain o3 Therefore, the extremum cannot be reached in the clesed domain o3 either.

In the case of the configuration C the uniqueness of the solution is proved since the function p, = 0 on the
remaining boundaries. In the case of configurations A and B the function p, cannot reach the extremum even
at the points x3 = ks, y3 = 0 since it follows from condition (1.7) and the equality py =0 that px = 0 while
px3 # 0 at the extremum points according to the Hopf max1mum principle. Let us assume that the extremum
is reached at the point x3 = kj, y3= 0. Let us put po =P (k3, 0). Integrating (2.3) by parts, we obtain

ks’
;€§+§1;gia=o @.5)
0

But both terms in (2.5) have the same sign in the case of a positive maximum or negative minimum, from
which we obtain that pg’ = 0. In the case of configuration B it is shown analogously that the function p, can-
not reach the extremum for x; = ky. The theorem is proved.

Corollary 1. For any two solutions Py and P, of the homogeneous problem (1.7), {2.2) the linear de-
pendence of the solutions P, and P, follows from the linear dependence of the vectors & (P;) = (6 {(®y), § 2(Py)),

8 (Py) = 0 1(Py), 6,(Py).

The existence of the solution is proved by reducing the problem to some singular integral equation.
Let us give on the "merger" line xy =x3=10

Pm2 = ® (Yy)s Py;a = TlTo_ICaCzﬂ,‘D (C3C{1y3) 2.6)

Here w(y) is an arbitrary function (w(0) = 0). One of the conditions (2.2) will hence be sa’usﬁed The
mixed problem (2.2), (2.6) in the domain o3 can be solved explicitly; in particular, the quantities px can be

calculated for X = 0 and Po; for ry = 1.

By the change of variables

2R,
B=0, rj=—gop
(1.5) is reduced to the Laplace equation in the domain of ellipticity. It follows from (2.1), (2.7) that the de-
rivatives pr] become infinite on the order of |1-r;|-4/2 on the lines of degeneration.

Let us examine the analytic function

D (L)) = pe/— ipa (=2,9
Ej = Rjcos 0y m; = R;sin6, {;=§; + in;

By virtue of the boundary conditions Hilbert problems originate for &2 and &7 in the domains oy and
0o The solution of the Hilbert problem is sought in the class of solutions bounded at points of discontinuity
of the coefficients of the boundary condition, The solution in a domain of quadrant type (in the domain o in
Fig. 2a) is hence determined uniquely in explicit form, and in a domain of quadrangle type (the domain o4
in Fig. 2a) to the accuracy of an arbitrary constant, Evaluating py i for Xy = 0 by means of the solution found
and satisfying the second condition in (2.2) on the line x, = X3 = 0, We obtain a singular integral equation to
determine the function w(y).
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Omitting the intermediate calculations, let us write down the integral equation for the case correspond-
ing to Fig. 2a:

re Vg =T [0 (y— ) —-e(y—n] o @)+ [w

+ T YT=77 [0 —0 (v )]” 2@ g I C Y
1 .
x[oere {v—1)] [ [ T2 — _‘y--z Jotra=
-1 m_yzoj 0 g YT s -0 (y__)] gx -

o VE=T  2sg(snye () Y(sy)l': 1 xg,(l/r_(z,s))

Vap—1 80— Gy Y L% 0 TG,

" AN 2V 1 1)
9 ""(‘/ :f((t,:)) )]‘”+ szs(y,s) {"(y‘?‘)““"y—“]"“

X (V :f ((_J—;)) ) —Ds 1 VI—% [6(s) —0(y—sD] Y (s3)

Here .
s = Colst, T=r1orl, q=(1—kg)(l + ka)t

=@E—e+0? b=B-D@+1)7
D is an arbitrary constant, 8 (y) is the Heaviside function, #,(z,q), #3(z,q) are elliptic theta-functions, and
the constants £ and 8 satisfy the system of equations

1 ks &8 Nsks
exp N T e+B T l—k

Moreover
T s =4t VIrE—1 Vi1

g(t) = — Zg‘/‘ 4200, ¢) : I‘[ (4 —qg®"y2 4™
B0 T Al

Y =2 0209 [0+ g™ — 4 2] [(1 + g™y — 4g™22]
820D L 0+ e — e ] [+ 0 — 4 ]

In the general case the singular integral equation is
Lo (y) = G (y) + DH\(y) + DHy(y) 2.9)

where 1. is a singular operator with coefficients continuous in the segment [0, 1], G(y) is a linear operator
over the known boundary data, H;(y) and Hy(y) are Holder continuous functions independent of the boundary
data, and D, and D, are arbitrary constants. In the case of configuration A, H,(y) = 0, Hy(y)= 0, in the case
of configuration B, Hy(y) = 0, Hy(y) = 0, and in the case of configuration C, Hy(y)= 0, Hy(y) = 0. The index
of the integral equation 2.9) in the class of solutions bounded at the point y = 0 is zero.

The proof of the existence of the solution of the original problem reduces to proving the existence of
the solution of the integral equation (2.9) and to determining constants Dy and D, such that the solution of the
corresponding Hilbert problem would satisfy the conditions 2.3), (2.4). The arbitrary constants D; and D,
originate in the solution of the Hilbert problem as was mentioned above. Let P = ¥(w) be the operator set-
ting the solution of 2.9) for fixed D; and D, in correspondence with the solution of the Hilbert problem with
the same constants Dy and D,.

Theorem 2. The solution of the problem (1.7), (2.2)-@2.4) exists under the assumptions made above.

Configuration C. The homogeneous integral equation (2.9) corresponds to the homogeneous problem
(2.2). By virtue of Theorem 1 and the equality » = 0, 2.9) is solvable for any right-hand side. In this case
the existence of the solution is proved.

Configuration A, Let the homogeneous equation (2.9) have only a trivial solution, Then the inhomo-
geneous equation is solvable for any right-hand side. Equation (2.9) with the right-hand side D;H;(y) cor-
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responds to the homogeneous problem (1.7), 2.2). Let w,(y) = L™'Hy(y), P = ¥(w,). Here L' is a linear
operator setting its solution in correspondence with the right-hand side of 2.9). It follows from Theorem 1
that

8, (Py) +0 2.10)

Let us put
o (y) = Dyoy(y) + L7G(y), P =¥ (o) =D,P, + P,
By satisfying condition (2.3) we obtain a linear equation in the constant D;:
8, (P) = Di8y(Py) + 8, (Py) = T
which is solvable uniquely because of (2.10).

Let wy(y) be a nontrivial solution of the homogeneous integral equation. According to Corollary 1, any
other solution of this equation depends linearly on wy{y). Then the dimensionality of the space of solu-
tions of the adjoint homogeneous equation in the adjoint class of solutions [9] also equals one. Let w, (y) be
a nontrivial solution of the adjoint homogeneous equation. Compliance with the solvability condition

1
(w*,F)=§F(t)m*(t)dt=0 ©.11)

is necessary and sufficient for the solvability of (2.9) with the right side F(y).

1t is asserted that (w,, Hy) # 0. If this is not so, then (2.9) with the right side H;() is solvable, But
by virtue of Corollary 1 the functions w(y) = L™'H,(y) and w,(y) are linearly dependent, which is impossible.
The solvability condition for the integral equation can be satisfied by selecting the constant D;. The general
solution of 2.9) is

o () = L (D H\(y) + G ) + Doooy)
where Dy is an arbitrary constant. By virtue of (2.9) the condition (2.3) can be satisfied by selecting Dy,

Configuration B. Iet the homogeneous equation (2.9) have just a trivial solution. Let us put

oy (y) = L7H(y), w(y) = L7 Hyy), Py =¥ (0), P, =¥ (92)
We obtain from the linear independence of the functions H, and H, and Corollary 1
det (8x (P))5=0 (k=1,21=1,2) ‘ (2.12)
The general solution of (2.9) is
© (y) = D10y(y) + Dywely) + LG (y)

Let P = ¥ (w). By satisfying conditions (2.3), (2.4) we obtain a system of two linear equations solvable
by virtue of 2.12). In this case, the solution exists.

Let the dimensionality of the space of solutions of the homogeneous equation be one, and w, (v) the
solution of the adjoint homogeneous equation as in the previous case. It can be shown that either (Hy, w, )=
0 or (Hyw,)#» 0. For definiteness let

(H1,04) =a, 50, (Hg0,) =05,
Let us put
Hyy) = bH\(y) + a,Hy(y), Hy) = bH\(y) — o, Hy(y) for by = 0;
| Hyy) = Hyy), Hy) = Hyy) for b, =0
Equation 2.9) can be written in the equivalent form
Lo (y) = DHy(y) + DH,(y) + G (y) @2.13)
The condition for solvability of (2.13)

Dy (Hj, 05) + (G, 0y) =0
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can be satisfied by selecting D;. The general solution of 2.13) is
o (y) = LYDHy(y) + G(y)) + DL H (y) + Dsoy)
where D, and Dj are arbifrary constants,

Let .
P, = k4 (mo)a P = ¥ (L"1H4)

According to Corollary 1
det (6, (Py))=0 (k=1,21=0,1)

Therefore, conditions (2.3), (2.4) can even be satisfied in this case.

It is shown by analogous reasoning that the solution of the problem also exists in the case when the
dimensionality of the space of solutions of the adjoint homogeneous equation is two. It cannot be greater
than two because of Corollary 1. The theorem is proved.

In conclusion, the author is grateful to L. V. Ovsyannikov for inferest in the research and useful com-
ments.
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